Querying the SAINTETIQ summaries — a first
attempt

W. A. Voglozin, G. Raschia, L. Ughetto, and N. Mouaddib

Laboratoire d’Informatique de Nantes Atlantique, Université de Nantes
2 rue de la Houssiniére, BP 92208, 44322 Nantes Cedex 3, France
{voglozin,raschia,ughetto,mouaddib}@lina.univ-nantes.fr

Abstract. For some years, data summarization techniques have been
developed to handle the growth of databases. However these techniques
are usually not provided with tools for end-users to efficiently use the
produced summaries. This paper presents a first attempt to develop a
querying tool for the SAINTETIQ summarization model. The proposed
search algorithm takes advantage of the hierarchical structure of the
SAINTETIQ summaries to efficiently answer questions such as “how are,
on some attributes, the tuples which have specific characteristics?”. More-
over, this algorithm can be seen both as a boolean querying mechanism
over a hierarchy of summaries, and as a flexible querying mechanism over
the underlying relational tuples.

1 Introduction

In order to handle the growth in size of databases, many approaches have been
developed to extract knowledge from huge databases. One of these approaches
consists in summarizing data (see for example [2,4,6,9,11]). However, summa-
rization techniques are usually not provided with tools for end-users to efficiently
use the summaries. As a consequence, users have to directly interpret the sum-
maries, which is conceivable with a few summaries only. In other cases, tools are
necessary.

In this paper, the structured data summarization model SAINTETIQ devel-
oped in our research team [11] is considered. SAINTETIQ provides a compact
representation of a database, rewriting the tuples by means of linguistic variables
[15] defined on each attribute, and classifying them in a hierarchy of summaries.
The set of summaries, produced by the process, describes the data in a com-
prehensible form. Thus, each summary, expressed with fuzzy linguistic labels,
symbolizes a concept that exists within the data.

This paper proposes a querying mechanism for users to efficiently exploit
the hierarchical summaries produced by SAINTETIQ. The first idea is to query
the summaries using the vocabulary of the linguistic variables defined in the
summarization process. Although linguistic terms are used in the expression of
queries, the querying process is clearly boolean. Since the querying vocabulary
is the one used within the summaries, the linguistic terms have become the at-
tribute values in the summaries and query answers contain linguistic terms only.

Then, basic queries such as “how are, on attribute(s) Ay, the tuples which are
d;; on A;”, can be answered very efficiently as the querying process relies on
boolean operations. Moreover, the algorithm takes advantage of the hierarchical
structure of the summaries, and answers are obtained rapidly. The gain is partic-
ularly important in case of a null answer, as only a small part of the summaries
hierarchy has to be explored, instead of the entire relation.

Querying the summaries as explained above is interesting in order to rapidly
get a rough idea of the properties of tuples in a relation. In case of null answers,
it clearly saves time. In other cases, a rough answer is often not enough. Thus,
the second idea is to query the database through the summaries, which would
be done by retrieving tuples from the summaries obtained as an answer in the
previous kind of queries. This process is then related to the “flexible querying of
relational databases” trend of research. Indeed, in this case, linguistic terms are
used in the expression of queries, and the answer would be composed of tuples
from the summarized relation, ranked according to a degree of satisfaction to
the query.

The next section describes flexible queries of databases and their features
compared to classical queries. It exposes some earlier works done in this field
by other researchers. Section 3 presents an overview of the SAINTETIQ model,
briefly depicting the representations of summaries and the different steps of the
summary building process. It also highlights the distinctive aspects of our ap-
proach. Section 4 thoroughly explains how advantage can be taken from the
use of the SAINTETIQ summaries hierarchies in a flexible querying process. Ex-
pression of queries, selection of summaries and formation of results are then
reviewed.

2 Regular databases flexible querying

A flexible querying process operating on relational databases probes the tuples
for adequacy to a query using a standard language, namely SQL. According
to Larsen [8], the querying process can be divided in three steps: extension of
criteria, selection of results and ordering.

The first step uses similarity between values to extend the criteria (sometimes
using non-binary operators) and to find potentially interesting results. The sec-
ond step, namely the selection of results, determines which data will participate
in the answer to the query. These data are afterwards referred to by the term
“results”™ the set of all results constitute the answer to a query. The last step (or-
dering) follows from the extension of criteria. It discriminates among the results
on the basis of their relative satisfaction to the query.

The fuzzy set theory is often used in flexible querying (see [3]) because it pro-
vides a formal framework to handle the vagueness inherent to natural language.
The following works, which are representative of the research on flexibility in
database querying, exemplify the use of fuzzy sets. They are essentially charac-
terized by a tuple-oriented processing, the possibility to define new terms and
especially, the use of satisfaction degrees, which we have not accomplished yet.

2.1 SQLf

The querying language SQLf, proposed by Bosc and Pivert [1], is an extension
of SQL aiming at “introducing fuzzy predicates into SQL wherever possible”. An
augmentation of both the syntax and semantics of SQL is performed in order to
express elements of a query in a fuzzy form. These elements include operators,
aggregation functions, modifiers (very, really, more or less), quantifiers (most, a
dozen) as well as general description terms such as young or well-paid.
Evaluation of the query may be based on a particular interpretation of the
query, for instance fuzzy sets crisp cardinality or Yager’s ordered weighted aver-
aging operators [14]. It occurs for each record and yields a grade of membership
(of the record to the relation symbolizing the query) which is used to rank the
results. An example of query in SQLf is “select 10 dpt from EMPLOYEE
group by dpt having most-of (age = young) are well-paid” where standard
SQL keywords are in bold face, and dpt and age are attributes from a relation
named EMPLOYEE. The query selects the 10 departments which have the best
satisfaction of the condition “most of the young employees are well-paid”.

2.2 FQUERY

FQUERY [7] is an integration of flexible querying into an existing database
management system, namely Microsoft Access. The system allows queries with
vague predicates expressed through fuzzy sets. Queries may contain linguistic
quantifiers and attach different levels of importance to attributes. In a such way
of doing, the authors try to apply the computing with words paradigm and so,
deal with linguistic values, quantifiers, modifiers and relations.

FQUERY uses fuzzy sets for the imprecision aspect and performs a syntax
and semantics extension of SQL. Linguistic values and quantifiers are repre-
sented as fuzzy sets. The query is assimilated to a fuzzy set resulting from the
combination of these sets. Accordingly, each record selected by a classical SQL
query, has a matching degree used to rank that record since it indicates how well
it corresponds to the query.

2.3 SummarySQL

Developed by Rasmussen and Yager [12], SummarySQL is a fuzzy query language
intended to integrate summaries into a fuzzy query. The language can not only
evaluate the truth degree of a summary guessed by the user but also use a
summary as a predicate in a fuzzy query.

A summary expresses knowledge about the database in a statement under
the form “Q objects in DB are S” or “Q R objects in DB are S”. DB stands for
the database, Q is a linguistic quantifier and R and S are summarizers (linguistic
terms). One can obtain statements like “most people in DB are tall” or “most
tall people in DB are heavy”.

Predicates (summaries) and linguistic terms and are fuzzy sets in the expres-
sion that represents the selection condition. The expression is evaluated for each

tuple and the associated truth values are later used to obtain a truth value for
the summary. SummarySQL is used to determine whether, or to what extent, a
statement is true. It can also be used to search for fuzzy rules.

3 Querying the SAINTETIQ summaries

To concentrate flexible queries on database records may lead to prohibitive re-
sponse times when a large number of records is involved, or when subqueries
are expressed. Waiting for an answer for a long time is frustrating, particularly
when the query fails.

Database summaries offer a means of significantly reducing the volume of in-
put for processes that require access to the database. The response time benefits
from the downsizing. Furthermore, for this querying process, performance does
not depend on specific combinations of attributes, i.e., whether the attributes
are indexed or not, since these summaries are general indexes for the underlying
data [10]. This eliminates possible restrictions due to predefined queries tailored
for efficiency.

When querying the summaries, the response time gain is made clearly at the
expense of a loss of precision in the answer. This is of no importance when only a
rough answer is required. But when more details about the tuples are required,
querying the summaries is only a first step: the entire set of relevant tuples
can be easily retrieved from the answer summaries. The querying mechanism
remains efficient, and there is no loss of precision in the answer. However, the
loss is in the querying language expressiveness, since for now only the linguistic
variables used to build the summaries hierarchy can be used in the expression
of the queries.

3.1 Summaries in SAINTETIQ

The SAINTETIQ model aims at apprehending the information from a database
in a synthetic manner. This is done through linguistic summaries structured in
a hierarchy. The model offers different granularities, i.e., levels of abstraction,
over the data. The steps necessary to build a summary hierarchy are described
below.

First, the fuzzy set theory is used to translate records in accordance with a
background knowledge provided by the user. For each attribute, linguistic vari-
ables (which are part of the background knowledge) offer a mapping of the
attribute’s value to a linguistic label describing that value. For instance, with
a linguistic variable for attribute INCOME (figure 1), a tuple value t.income
=50,000 is expressed as t.income = {1.0/reasonable} where 1.0 tells how well
the label reasonable describes the value ‘$50,000’. Applying this mapping to
each attribute of a relation corresponds to a translation of the initial tuple into
another expression called a candidate tuple.

Because one initial attribute value may be described by more than one fuzzy
label (for instance, $37,000 is described by both modest and reasonable), one

1| none miserable modest reasonable comfortable enormous outrageous

12 20 25 35 42 57 64 79 86 94 99 INCOME(KS)

Fig. 1. Linguistic variable defined on INCOME

initial tuple may yield many translated representations, i.e., many candidate
tuples. For a tuple ¢ = (v1,v2,...,v,), a candidate tuple ct is under the form
ct = {aq/dy,an/da, ... ,an/dy,) where d; is a fuzzy label and «; is a satisfaction
degree which tells how well v; is described by d;.

In a second place, comes a generalization step, allowing to represent fuzzy
linguistic labels using more general labels.

Concept formation is the last step of the summary hierarchy building process.
Each candidate tuple from each database record is incorporated into a tree and
reaches a leaf node. This can be seen as a classification of the candidate tuple.
It is important to notice that the tree is modified throughout candidate tuples
incorporation: it progressively becomes a complete representation of the data.
The way the tree evolves is partially controlled by learning operators. These
operators discover new concepts (summaries) when necessary so that the current
set of concepts reflects better the data.

For more clarity, let us mention that the tree represents the summary hi-
erarchy and that a node represents a summary. In the hierarchy structure, the
level can be associated with the relative proportion of data that is described by
a summary: the deeper the summary in the tree (or the lower its level in the
hierarchy), the finer the granularity. It follows that the lowest levels contain the
most precise and specific summaries. The intensional expression of such sum-
maries is similar to candidate tuples: z = (a1 /dy, as/da, ..., an/dy,). There is
only one label per attribute.

Inversely, the root of the tree is the most general summary view one can
have over the data. The intensional expression of more general summaries may
have one or more multi-labeled attributes. This depends on the labels that are
present in the candidate tuples captured by the summaries. An example of such
expression is z = (a11/d11 + a12/dia, an/da, . .., /dy,).

As far as precision is concerned, the compact expression of a summary induces
only an additional processing: for more details about tuples, one has to probe
all of the summary’s leaf nodes. No precision is lost since a candidate tuple is
an exact representation of an initial tuple using the vocabulary given.

3.2 Distinctive features

Our approach to flexible queries uses the SAINTETIQ summaries to answer ques-
tions such as “how are objects that have such and such characteristics?” (a few
examples of questions can be found in Section 4.1). As the data searched by the
querying process is made of summaries, it seems obvious to make results from
summaries. Moving a step further, it is plain to retrieve other kinds of results
such as candidate tuples or initial relational tuples.

Since one summary can be linked to candidate tuples by simply probing all its
children leaves, the sort of results can be changed from summaries to candidate
tuples. And one further step links candidate tuples to database records. Because
the retrieval of candidate tuples or database records is immediate, in the rest of
this document, results are assimilated to summaries only.

Another distinction exists in the classification step of the process: no prefer-
ence is expressed as there is no evaluation of result quality with respect to the
query. All results are shown to the user in a non-discriminated form and it is up
to them to determine what results are better than others. As far as summaries
are concerned, no ranking is performed.

4 Description of the process

As stated in Section 2, the first step of a database flexible querying process
consists in extending criteria. Thanks to linguistic variables defined for each
attribute, criteria extension is already performed in SAINTETIQ. From then, we
can use binary operators to identify the data to be considered as results. This
section deals with all aspects of selection from the expression and meaning of a
query to its matching against summaries.

To illustrate the querying process, we use a toy example based on a rela-
tion R =(thickness, hardness, temperature). R describes some imaginary steel
industry materials over arbitrary features. For each attribute of R, the following
descriptors are used:

— thickness: small, thin, medium, thick, huge;
— hardness: malleable, flexible, soft, medium, hard, compact, impenetrable;
— temperature: cold, low, moderated, normal, high, extreme.

4.1 Expression of a query

This approach to flexible querying intends to answer questions such as “how are
materials which are thin?” or “how are materials which are high-temperature
and medium-hardness?”. In the prototype developed for querying, the questions
are expressed using a user-friendly interface that composes the corresponding
query in an SQL-like language. For the previous questions, the queries formed
are respectively:

@1: DESCRIBE ON temperature, hardness
WITH thickness IN (thin)

@Q2: DESCRIBE ON thickness
WITH temperature IN (high)
AND hardness IN (medium)

Because an answer, for example “thin materials have a soft hardness and a
low temperature”, is a description of basic data (summaries, candidate tuples,
database records), we consider description as an elementary operation. Embed-
ding the DESCRIBE operator (and other operators from summary-based query-
ing) in an extension of SQL is a future project. For a more formal expression,
let:

— S be a set of attributes;

— R(S) be the relation whose tuples are summarized;

— @ be a query, for instance 1 or Qs;

— A be an attribute appearing in the query (A € S);

— d be a label (or descriptor) also appearing in the query.

A question explicitly defines some values (thin, high or medium) called required
characters. In a query, descriptors embody required characters and serve as a
basis for determining what data partake in the answer.

A question also defines, sometimes implicitly, the attributes for which re-
quired characters exist. The set of these input attributes for a query is denoted
by X. The expected answer is a description over the other attributes, whose set
is denoted by Y. Without further precision, Y is the complement of X relatively
toS: XUY =Sand XNY = 0.

Hence a query defines not only a set X of input attributes A; but also, for
each attribute A;, the set C4, of its required characters. The set of sets Ca, is
denoted by C, as shown in the following example.

Ezample 1. Let @1 and @2 be the queries stated above.

For @1, X = {thickness}, Y ={hardness, temperature}, Cip;ckness ={thin}
and C' = {Cthickness}-

For (Y2, X ={hardness, temperature}, Y ={thickness}, Chardaness ={medium},
Ctemperature :{hlgh} and C = {Chardne557 CVtemperature}‘-

When users formulate a question, they expect data with some characteristics
to be put forward. The meaning of that question becomes arguable when many
characteristics are expressed for one attribute or when conditions exist for more
than one attribute.

The first case is illustrated by the question “how are materials which are flex-
ible or soft?”. Because the database records are one-valued tuples, the question
is interpreted as “how are materials which hardness is one of {flexible, soft}?”
and not as “how are materials which hardness is both flexible and soft?”. The
equivalent query for the correct interpretation is Q3: DESCRIBE ON thickness,
temperature WITH hardness IN (flexible, soft), interpreted as the condition
hardness = flexible OR hardness = soft.

The second case is illustrated by the question “how are thick compact mate-
rials?”. The querying process should put forward only data that comply with the
characterization on both thickness and hardness. This precludes, for instance,
thick soft materials and thin compact materials from being selected. The equiv-
alent query for this second question is QQ4: DESCRIBE ON temperature WITH
thickness IN (thick) AND hardness IN (compact). The condition of Q4 is inter-
preted as thickness = thick AND hardness — compact.

4.2 Evaluation of a query

This section deals with matching one particular summary against a query to
decide whether it corresponds to that query and can then be considered as a
result. The query is transformed into a logical proposition P used to qualify the
link between the summary and the query. P is under a conjunctive form in which
all descriptors appear as literals. In consequence, each set of descriptors yields
one corresponding clause.

Ezample 2. For question g5 “how are the materials which are thin or medium-
thickness and normal or high-temperature?”, the corresponding query is @s:
DESCRIBE ON hardness WITH thickness IN (thin, medium) AND temperature
IN (normal, high).

In this query, X = {thickness,temperature}, Cinickness = {thin, medium}
and Cremperature = {normal, high}. It follows that Ps = (thin V medium) A
(normal V high).

Let v be a valuation function. It is obvious that the valuation of P depends
on the summary z: a literal d in P is positively valuated (v(d) = TRUE) if and
only if d appears in z. So we denote by v(P(z)) the valuation of proposition P
in the context of z.

Let L4, (z) be the set of descriptors that appear in z. An interpretation of P
relatively to query @ leads to discarding summaries that do not satisfy P. But,
as shown in the following example, some summaries might satisfy P and yet not
match the intended semantics of the query.

Example 3. Table 1 shows the characteristics of materials covered by a summary
2o along with zg itself. If zq is tested for conformance with Q5 (see example 2), we
can see that v(Ps(z9)) = TRUE, but nowhere can one find a material responding
to question gs.

While confronting a summary z with a query @, three cases might occur:

— Case 1: no correspondence. v(P(z)) = FALSE. For one attribute or more, z
has no required character, i.e., it shows none of the descriptors mentioned in
query Q.

— Case 2: exact correspondence. The summary being confronted with query @
matches its semantics. It is considered as a result. The following expression
holds: v(P(z)) = TRUE and Vi, L4,(z) C C;.

Table 1. Ezample of descriptor combination

thickness temperature
ctr thin extreme
cto medium extreme
cts thick high

| zo| {thin, medium, thick}| {extreme, high}|

// h \‘ // - _— Cl

I | |

\\\ L,/ N 777LA!'(Z)
Case 1 Case 2 Case 3

Fig. 2. Comparison of descriptor sets La,(z) and C;

— Case 3: no decision can be made. There is one attribute A; for which sum-

mary z exhibits one or many descriptors besides those strictly required (i.e.,
those in C;): 34, La,(2) — C; # 0.
Presence of required characters in each attribute of z suggests, but does
not guarantee, that results may be found in the subtree starting from z.
Exploration of the subtree is necessary to retrieve possible results: for each
branch, it will end up in situations categorized by case 1 or case 2. Thus, at
worst at leaf level, an exploration leads to accepting or rejecting summaries;
the problem of indecision is always solved.

The situations stated above reflect a global view of the confrontation of a
summary with a query. They can also be interpreted, from a crisp set point of
view, as a combination of comparisons, still involving L4, (z) and C;, concerning
one required attribute A;. Figure 2 shows all comparisons using a set represen-
tation with Ly, (z) symbolized by a dashed circle and C; by a solid circle.

4.3 Selection algorithm

This section applies the matching procedure from the previous section over the
whole set of summaries organized in a hierarchy.

Since the selection should take into account all summaries that correspond
to the query, exploration of the hierarchy is complete. The selection (algorithm
1) is based on a depth-first search and relies on a property of the hierarchy: the
generalization step in the SAINTETIQ model guarantees that any descriptor that
exists in a node of the tree also exists in each parent node. Inversely, a descriptor
is absent from a summary’s intension if and only if it is absent from all subnodes
of this summary. This property of the hierarchy permits branch cutting as soon
as it is known that no result will be found. Depending on the query, only a part

of the hierarchy is explored. In any case, all relevant results, and only relevant
results, are captured.

Algorithm 1 describes the exploration and selection function with the follow-
ing assumptions:

— the function returns a list of summaries;

— function Corr symbolizes the matching test reported in Section 4.2;

— operator ‘+’ performs a list concatenation of its arguments;

— function Add is the classical constructor for lists, it adds an element to a list
of the suitable type;

— L,.s is a local variable.

Algorithm 1 Function Explore-Select(z, Q)

Lyes < () {the list for this subtree is empty}
if Corr(z, Q) = indecisive then
for all child node z.pi1q of z do
Lyes «— Lyes+ Explore—Select(zchild, Q)
end for
else
if Corr(z, Q) = ezact then
Add(z, Lres)
end if
end if

return L.

4.4 Classification

The classification step is an aggregation of selected summaries according to their
interpretation with respect to proposition P: summaries that have the same
required characters on all attributes of the input attributes set X form a class
that is denoted by B.

Example 4. Once again query Q5 from question g5 is considered. The proposi-
tion Ps induced by Q5 (see example 2) admits 9 classes that match the following
interpretations where only positively valuated literals are shown: {thin, nor-
mal}, {thin, high}, {medium, normal}, {medium, high}, {thin, medium, nor-
mal}, {thin, medium, high}, {thin, normal, high}, {medium, normal, high},
{thin, medium, normal, high}.

Let z; and z5 be two summaries selected for Q5. Assume that they are de-
scribed by “thin” for the thickness and “normal” for the temperature. Then, they
belong to the same class {thin, normal}. Had they been described by “medium”
for the thickness, “normal” and “high” for the temperature, they would have
belonged to the class {medium, normal, high}.

Table 2. Ezample of selected summaries

Summary hardness

21 flexible

29 soft

z3 hard

24 compact

- t/Interrogation flexible _ =lEx]
Fichier &ide
Available aliibutes Requited aftibules Duew.
ColarCenter ColorBottom DEGCAIBE 0N ColorCenter, ColorLeft, ColorTap WITH ColorRlight IN [Nor, blew vif
ColarLeft ColarRight clair] &MD ColorBaottom M [Blanc, bleu wif sombre, bleu vif clair]
ColorTop i
Results
) .) — Fesultats [0 ms)
Deseriph Requited descriptors: inelalz)
il el = { Coloright:{Noir). ColorBottom:{bleu vif clair} }
Elanc - Bleu vif clair e hian
bleu terne clsit R [Gt
cyan teme clair a ColorLeft:-{Nair}
cyan vif clair ColorT o {Noir}
Gris clai { ColorRight:{Noir}. ColorBottom-{Blanc} }
e leine.clar + { Colorfia n“} EEE[BE“ZLMZ.'."}; sombre} }
teine cla - ; 2

Rl - ight:{bleu vif clair}. ColorBottom{bleu vif clair} }

Fig. 3. Screenshot of the current implementation

Aggregation of summaries inside a class B is a union of descriptors (see
example 5): for each attribute A; of output set Y, the querying process supplies
a set of descriptors. This set of descriptors characterizes summaries that respond
to the query through the same logical interpretation (i.e., summaries that show
the same labels for input attributes).

Ezample 5. Table 2 lists summaries selected for class {thin, normal} along with
their descriptors for attributes of Y = {hardness}. For that class, we obtain an
output set Charaness ={flexible, soft, hard, compact}.

The use of classes stems from the desire to provide the user with an inten-
sional expression of results. As a response to a query, the process returns a list
of classes along with a characterization of the class for each output attribute.
The list is interpreted as follows: while searching for thin or medium-thickness
and normal or high-temperature materials, it turned out that:

— thin normal-temperature materials are either flexible or soft;
— thin high-temperature materials are hard;

Figure 3 shows a screenshot of the current implementation of the querying
process. The data set used for this specific screenshot describes the images of
an image repository based on their color characteristics. For the expression of

a query, we followed Larsen’s idea that the query language should be “on the
human user’s condition” (see [8]). This lead to a Microsoft Access-like procedure
where the user tells which attributes are required and for each of these, which
fuzzy linguistic labels are wanted. The relevant query is formed by the system
and displayed. The list of classes discussed in the previous paragraph can be seen
on the right side of figure 3 with classes in bold face and output characterizations
in normal style font.

4.5 From summaries to tuples in an answer

In the summarization process, the rewriting of data into fuzzy labels produces
satisfaction degrees that tell how well a label describes the data. The satisfaction
degrees, which are part of a summary’s intension, are not used in this paper. But
the qualitative information carried by these degrees is interesting, particularly
to make a better distinction between results.

A fully flexible querying process with a ranking of results can build on our
approach. In a first approximation, summaries are a general index over the data
used to quickly reduce the search space. Then, a second step retrieves tuples from
the output summaries extension. Finally, the degrees attached to each tuple can
be taken into account to compute a total satisfaction degree of the query. This
second step is the subject of a future paper.

An additional enhancement would deal with a quantitative aspect. Besides
satisfaction degrees, the SAINTETIQ model provides frequency and proportion
data attached to descriptors and candidate tuples [10]. By using that data, we
will be able to express more information in a response, for instance the response
in example 5 might be “thin normal-temperature materials are either flexible or
soft but only a little part of them are soft”.

5 Conclusion and future research

In this paper, a querying tool for the summarization model SAINTETIQ has been
proposed. It allows end-users to efficiently retrieve summaries, and exploits the
hierarchical structure of the summaries produced by SAINTETIQ.

From a technical point of view, it performs a boolean matching between the
summaries and the query on the basis of linguistic labels from a user-defined
vocabulary. It is therefore a classical boolean querying tool whose novelty lies
in the use of summaries and in the efficient use of a hierarchy. The querying
machinery, as well as a user-friendly interface have been developed and tested
on toy examples in order to validate the method.

Then, as it is easy to obtain tuples from summaries, and to rank the tuples
according to their membership degree to the summaries, it has been shown that
the method can also be considered as a flexible querying tool on a relational
database. The flexibility entirely relies in the summarization process, and this is
one of the reasons why the process is efficient.

Besides, this work is a first attempt at querying the summaries, and the
richness of the framework is far from being entirely exploited. Several future
developments, such as the possibility to use another vocabulary, are under con-
sideration.

Above all, expressiveness is the main point future work will focus on as it
will eventually allow imprecision in not just the representation of information
but also in user queries. It might also cover preferences or priorities in queries
as mentioned by Rocacher in [13].

An important concern resides in making use of the different levels of granu-
larity that a summary hierarchy offers. For now, the selection procedure returns
summaries that are at different levels in the hierarchy. As interpretation is not
straightforward, we will investigate making the selection descend as far as pos-
sible, even when a summary that matches exactly the query is found on the way
to leaf nodes.

From the logical or set-based expression of queries, determining the reasons
of a search failure is simple (see 4.2). From then, an interaction with the user will
permit us to implement one of the cooperative behaviors (corrective answers)
surveyed by Gaasterland in [5]. We may display the reasons of a failure, that is
the fuzzy labels in the query that cause the failure, so that the user could ask a
new query based on the previous one.

References

1. Patrick Bosc and Olivier Pivert. Fuzzy queries and relational databases. In Proc.
of the ACM Symposium on Applied Computing, pages 170-174, Phoenix, AZ, USA,
March 1994.

2. Juan C. Cubero, Juan M. Medina, Olga Pons, and Maria Amparo Vila Miranda.
Data summarization in relational databases through fuzzy dependencies. Informa-
tion Sciences, 121 (3-4):233-270, 1999.

3. Didier Dubois and Henri Prade. Using fuzzy sets in database systems: Why and
how ? In Flexible Query Answering Systems, pages 45-59. Kluwer Academic Pub-
lishers, Boston, September 1997.

4. Didier Dubois and Henri Prade. Fuzzy sets in data summaries — outline of a new
approach. In Proc. 8th Int. Conf. on Information Processing and Managament
of Uncertainty in Knowledge-based Systems (IPMU’2000), volume 2, pages 1035—
1040, July 2000.

5. Terry Gaasterland, Parke Godfrey, and Jack Minker. An overview of cooperative
answering. Journal of Intelligent Systems, 1(2):123-157, 1992.

6. Janusz Kacprzyk. Fuzzy logic for linguistic summarization of databases. In Pro-
ceedings of the 8th International Conference on Fuzzy Systems (FUZZ-IEEE’99),
volume 1, pages 813-818, August 1999.

7. Janusz Kacprzyk and Slawomir Zadrozny. Computing with words in intelligent
database querying: standalone and Internet-based applications. Information Sci-
ences, 134:71-109, May 2001.

8. Henrik Legind Larsen. An approach to flexible information access systems using
soft computing. In Proceedings of the 32nd Hawaii International Conference on
System Sciences, volume 6, January 1999.

10.

11.

12.

13.

14.

15.

Do Heon Lee and Myoung Ho Kim. Database summarization using fuzzy isa hierar-
chies. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics,
27:68-78, February 1997.

Guillaume Raschia. SAINTETIQ: une approche floue pour la génération de résumés
a partir de bases de données relationmelles. PhD thesis, Université de Nantes,
December 2001.

Guillaume Raschia and Noureddine Mouaddib. SAINTETIQ: a fuzzy set-based
approach to database summarization. Fuzzy Sets And Systems, 129:137-162, 2002.
Dan Rasmussen and Ronald R. Yager. SummarySQL - a fuzzy tool for data mining.
Intelligent Data Analysis, 1:49-58, 1997.

Daniel Rocacher. On fuzzy bags and their application to flexible querying. Fuzzy
Sets And Systems, 140:93-110, November 2003.

Ronald R. Yager. On ordered weighted averaging aggregation operators in mul-
ticriteria decisionmaking. IEEE Transactions on Sytems, man and Cybernetics,
18:183-190, 1988.

Lotfi A. Zadeh. The concept of a linguistic variable and its application to approx-
imate reasoning. Information Sciences, 8:199-249 & 301-357, 1975. Part III in
volume 9, pages 43-80.

